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1 Executive	Summary	ALOHA is a tool flow composed by a set of modules that has been created with the purpose of facilitating the design of Deep Learning (DL) applications and their porting on embedded heterogenous architectures, by making this process as simple and painless as possible.  The main problem with the current DL solutions development flow is that the training phase leads to the selection of an optimal algorithm configuration mainly considering accuracy as the only main design objective. The selected algorithm configuration has little or no correspondence with the specific features of the processing hardware architecture in charge of executing the inference task. Developers of hardware-software systems dealing with the inference process commonly start from pre-trained networks, trying to optimize as much as possible their execution on the target computing platform. This dichotomy determines the need for multiple design iterations, potentially leading to long tuning phases, overloading designers and with results highly depending on their skills. The ALOHA tool flow aims at automating different design steps and reducing development costs and time, by bridging the gap between DL algorithm training and inference phases. It considers hardware-related variables and security, power efficiency, and adaptivity aspects during the whole development process, from pre-training hyperparameter optimization and algorithm configuration to deployment. To achieve the stated objectives, in Task 1.1 (System	specification	and	subsystem	definition) the Consortium has defined the architecture of the ALOHA toolflow, specifying its different building blocks and the interfaces among them, in compliance with requirements and specifications established by the developing partners and the use-case providers in Task 1.2 (Use‐cases	 specification). For further information about toolflow components working principle and collected requirements, please refer to deliverables D1.1 (Report on general specifications and interface definition), D1.4 (General specification of the Surveillance use-case), D1.5 (General specification of the Smart-Industry use-case), and D1.6 (General specification of the medical application use-case). This document is related to the activities carried out in work package WP1, within Task	1.3	–	ALOHA	Tool	
flow	integration. It specifies the activities performed by the Consortium from month M7 to M18 (July 2018 – June 2019) for integrating the different components and tools under development in work packages WP2, WP3 and WP4 into an integrated functioning toolflow. This deliverable provides a generic view on the integration process, pointing out the different steps that have led to a first release of the ALOHA toolflow, which was used by use-case providers in WP5 to build their demonstrators (see deliverable D5.6) and to evaluate the functionalities and usability of standalone components.  All the integration process is based on the specification activities previously carried out in Task 1.1 and Task 1.2. The ALOHA project follows an Agile software development approach, thus the integration steps described in this deliverable will be performed iteratively, improving the first version of the ALOHA toolflow step by step and increasing its maturity continuously. The interactions among different components of the architecture are subject to possible modifications in future iterations. This document will evolve and gain more precision and substance during the next months. An updated version will be submitted at month M30: 

 D1.3 Report on tool flow integration – Update [M30] After an overview of the ALOHA framework (Section 2), its steps (Section 3), and a description of the developed user interface (Section 4), we provide in Section 5 details on the integration process and in Section 6 an overview of the testing activities performed so far. We conclude this report reporting in Section 7 an updated list of the ALOHA key performance indicators. 
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All the ALOHA partners have contributed to this deliverable. 
1.1 Acronyms	and	abbreviations	

Acronym	 Meaning	AOW	 Architecture Optimization Workbench	API	 Application Programming Interface	CNN	 Convolutional Neural Network	DL	 Deep Learning	DNN Deep Neural Networks DSE Design Space Exploration GA Genetic Algorithm KPI Key Perfomance Indicator KPN Kahn Process Network M Month ONNX Open Neural Network Exchange Format PI Parsimonious Inference REST Representational State Transfer SDF Synchronous DataFlow   
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2 ALOHA	framework	This section describes the ALOHA framework and provides a generic view on how the different parts interact with one another to achieve the requested functionalities and performance. The purpose of the framework is to automate and facilitate three different steps: algorithm selection (STEP 1), application partitioning and mapping (STEP 2), and deployment on target hardware (STEP 3). The overall ALOHA framework is shown in Figure 1. Through the user interface, the ALOHA tool flow receives as inputs the following data:  
 a starting neural network,  
 a dataset,  
 a target architecture description,  
 a configuration file containing information about the target application,  
 a set of constraints on accuracy, security, performance and power that the application must satisfy. Starting from this set of user-specified inputs, the tool flow generates step by step a partitioned and mapped neural network configuration, ready to be ported on the target processing architecture, that co-optimizes both the application-level accuracy and the required security level, inference execution time and power consumption.  

 
Figure	1:	General	architecture	of	the	ALOHA	framework.	
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The graphic interface guides the user during the definition of a use-case, shows work in progress and provides visualization of results on the implemented steps in the form of graphs and tables. It is developed as web application and provides ease-of-use and accessibility to the tool flow, ensuring future adoption among deep learning practitioners who are not participating in this project. Each step of the tool flow requires specific interactions, interconnections, and transmission of information among its own components to perform its function. In the next two sections, we provide a short description of each step that is useful for understanding how the framework works, and we present the developed user interface.   



ALOHA – 780788 
D1.2 Report on tool flow integration 

10 Copyright - This document has been produced and funded under the ALOHA H2020 Grant Agreement 780788.  Unless officially marked PUBLIC, this document and its contents remain the property of the beneficiaries of the ALOHA Consortium and may not be distributed or reproduced without the express written approval of the project Consortium. 

3 Tool	flow	environment	This section provides a short description of each steps of the ALOHA tool flow.  Please note that the three steps of the tool flow are, respectively, directly related to the activities performed in work packages WP2‐Automated	 algorithm	 design	 and	 configuration, WP3‐Automated	 application	
partitioning	and	mapping, and WP4‐Hardware	abstraction	 layer	and	 runtime	management, and to their outcomes. A detailed explanation of how each step is performed and how each component is implemented can be found in deliverables D2.2 (Report on automated algorithm configuration - Update), D3.2 (Report on automated application partitioning and mapping - Update), and D4.2 (Report on hardware abstraction layer techniques - Update). 
3.1 Step	1	‐	Automation	of	the	algorithm	design	process	The first step is guided by a Design	 Space	Exploration	 (DSE)	 engine, which performs a multi-objective exploration using a genetic algorithm and accesses a set of refinement and evaluation tools to generate the optimal DNN configuration, depending on the target application, the constraints imposed, and the target hardware platform selected by the user (see Figure 1). Each evaluation tool is able to estimate a specific parameter for each design point. The DSE engine starts its operation using an initial DNN configuration provided as input by the user, or generating itself a first population of design points corresponding to random algorithm configurations in terms of number of layers, kernel size, layer connectivity. Then, to refine and evaluate the generated design points the DSE engine cooperates with the following set of satellite tools: 

 Refinement	 tool	 for	 parsimonius	 inference. It tries to reduce the computational workload associated with the inference execution of a candidate design point, the size of the memory footprint, and the IO bandwidth requirements, by applying quantization and pruning techniques; 
 Accuracy	evaluation	tool. It assesses the accuracy of a candidate design point. This tool is based on a Training Engine, which can be configured to train a DNN model from scratch or to apply transfer learning techniques to it. In the latter mode, the engine tries to reuse pre-trained network models, personalizing them for the target use case. The accuracy evaluation tool offers local hyper-parameter exploration, flexible data parsing (multiple input formats) and flexible use-case configuration (multiple AI tasks, such as classification, detection, tracking). 
 Security	evaluation	 tool. It evaluates the robustness of a candidate design point to adversarial attacks happening in prediction phase.  
 Performance	 and	 Power	 evaluation	 tool. It evaluates the performances and the power consumption associated with the execution of the inference of a candidate design point on a target architecture. It converts the DNN model coming from the DSE engine to an analyzable application model (i.e. a Cyclo-Static DataFlow model). Taking into consideration the target architecture description received as input, this satellite tool allows to pre-estimate what will be the execution time and power consumption of the actors inside the generated model. When the exploration is finished, and the most suitable design choice is identified, the DSE engine triggers the next step of the tool flow. 

3.2 Step	2	‐	Optimization	of	the	partitioning	and	mapping	The second step of the tool flow is guided by a System‐level	DSE	engine, which identifies the best partitioning of the algorithm configuration generated by step 1 in sub-tasks, and finds the optimal mapping scheme of these sub-tasks on the different processing units available in the target hardware platform, able to satisfy requirements and constraints specified by the user (i.e. throughput, latency and power). Similarly to the 
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previous step, this is done using a genetic algorithm for surfing the design space and requiring evaluation of the candidate partitioning and mapping scheme to two satellite tools: Sesame and Architecture	
Optimization	Workbench (AOW). These tools simulate computation and task-to-task communication and provide approximates on execution (cycle) times, energy consumption, hardware utilization and resource contention. AOW explores the whole design space using an analytic approach, while Sesame performs more precise simulation over a more limited search space. The System-level DSE engine can also access the post‐
training	 algorithm	 refinement	 tool for parsimonious inference to achieve a workload reduction by considering specific features of the target architecture. This satellite tool tries to reduce the computational workload by applying both a sophisticated on-line data-dependent kernel/component pruning mechanism and a conversion from static to dynamic computing graph to the DNN model.  When the system-level exploration is finished and the more efficient mapping of the DNN configuration is identified, the last step of the tool flow can be carried out. 
3.3 Step	3	‐	Automation	of	the	porting	process	The last step of the tool flow is the porting of the DNN configuration on the target hardware architecture. A programming interface receives as input the partitioning and mapping information generated by step 2, and translates them into specific calls to computing and communication primitives exposed by the target hardware architecture. The generated platform-specif code is then customized to reduce as much as possible power consumption and improve performance using, when possible, optimization techniques such as power gating, clock gating and frequency scaling.   
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4 User	interface	design	The ALOHA user interface is based on a Kaban board, a well-known artifact in the Agile domain, that lets the user understand the status of the different executions in a single view. It has been designed to be as compact and informative as possible while letting users carry out any task they want with the minimum of fuss. The interface provides users with the ability to monitor the state of each step of multiple projects through the tool flow at any time. It is built using a state-of-the-art JavaScript-based framework called ReactJS3. The home screen is shown in Figure 2.  

 
Figure	2:	The	home	screen	of	the	ALOHA	user	interface	The Kanban approach allows to have a simple and intuitive graphic interface, with only the important information highlighted. The visual board is divided into columns, each of them representing a specific development step of the tool flow process. Each column is populated with cards that represent work items of different types. Cards can be added in a column, deleted, or dragged from one column to the other.  When creating a new project, it automatically creates a card that is placed in the first column. Once it’s ready,                                                                

3 https://en.reactjs.org/ 
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the user can click the Start button to initialize the execution of the step. Once the execution finishes, the user can access a summary of the results and choose wheter to run the step again or run the next stage after dragging the card to the next column. In general, each card will move from left to right until the full workflow is completed and the work is done. In particular, to execute a new automatic model configuration and porting, the user starts creating and configuring a new project from scratch. This is done by selecting Create	New	Project	from the home screen. This opens the dialog shown in Figure 3, which allows to edit a project title and a description, and to specify information about: 
 the expected parameters and performances to be met (Constraints), 
 the target hardware platform to be used (Architecture),  
 the target application to be implemented (Algorithm	Configuration). 

 
Figure	3:	Create	a	New	Project	dialog	box	The user can define the desired values for accuracy, security, execution time and power consumption in the Constraints	dialog box shown in Figure 4. 
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Figure	4:	Constraints	dialog	box	The user can upload an architecture specification file to the project by means the Architecture	dialog box shown in Figure 5. This .json file provides information about the target hardware platforms in terms of population of computing elements, connectivity, and available operating modes (i.e. data types, working frequency and gating conditions).  

 
Figure	5:	Architecture	dialog	box	Finally, the user can specify in the Algorithm	Configuration dialog box (see Figure 6) the target application to be implemented by: 

 specifying a link to the shared folder location that stores the dataset to be used; In future implementations this will be updated to a file uploading form. 
 uploading an initial DNN configuration; 
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 specifying additional paramaters about the task type, training rate, number of training epochs, batch size, optimization method, loss function 

 
Figure	6:	Example	of	Surveillance	use‐case	specification	Once that all the information has been provided, the user can run the project by selecting Submit in the Create project dialog box (see Figure 3) what automatically creates a new card for it. By clicking the Start	

button the execution of the first step in the flow is launched. When the process corresponding to this first step is terminated, the option Get	result is available in the card and the Results dialog box is shown in the screen. TensorBoard-compliant logs are also gathered to enable joint visualization of pareto points and exploration results. When each of the steps is completed, the project card can be dragged to the next phase (see Figure 2) and results can be obtained in a similar way.  
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Figure	7:	Example	of	Results	dialog	box	reporting	the	results	for	the	algorithm	configuration	step	   
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5 Integration	process	As already described in deliverable D1.1 (Report on general specifications and interface definition), the ALOHA project follows an Agile software development approach based on the concept of microservices. Each step of the ALOHA tool flow has been broken into smaller, completely independent microservices components (see Figure 1), which can be built, updated and deployed individually to implement a single, defined purpose or task. This microservice approach ensures flexibility, allows the project developers to work autonomously and make changes independently, and allows the usage of different programming languages for each component. A failure/fault in one microservice does not affect the functioning of other components of the tool flow. Each component can be extended or replaced with less effort compared to a monolithic architecture. This section provides a detailed insight into the integration process of the project. 
5.1 Building	the	microservice	architecture	The main component of the designed architecture are microservices. Each microservice is used to create loosely isolated running environments, so that each component can be independently built and deployed to implement a specific feature of the ALOHA tool flow. In particular, Docker 4 has been used to implement, manage and execute the images of each of the microservices as Docker images or containers. Each individual component of the ALOHA the tool flow has an individual project in the ALOHA’s Gitlab repository https://gitlab.com/aloha.eu. To integrate all the projects into a single one, corresponding to the complete toolflow, a new project was created, available at https://gitlab.com/aloha.eu/docker_arch, containing an integrated version that includes scripts and dependency lists needed to: a) clone all the individual component repositories; b) compose a docker environment including all the individual component containers; c) bring up a front-end instance with available GUI; d) bring up the database facility needed for the project.  A graphic description of the implemented architecture is shown in Figure 8. It shows the interaction among the different components of the ALOHA toolflow. The whole architecture is designed to run in a distributed environment. The user can access the toolflow through the web GUI provided by the front-end orchestrator. By using it, the user is able to interact with the toolflow and action launched in the frontend is then communicated to the back-end orchestrator which executes the corresponding tools. The components run on docker containers, so they are independent and they communicate through REST APIs, as it was decided when creating the design of the architecture. To enable parallel computation, each multiple workers are allowed within each component. The synchronization among the component and its                                                                
4 https://www.docker.com/ 
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workers is implemented by the RQ Python library based on the lightweight Redis DB5. The toolflow produces different types of files, such as ONNX 6 files containing the description of each generated models, TensorBoard logs, text logs, which are stored in a shared data folder accessible by each component. A shared MongoDB 7database is used to store, manage and facilitate the access from all the ALOHA modules to other types of information, i.e. constraints, training hyper parameters, security level, performance evaluation, stored in separated MongoDB collections. The GUI provides the access to TensorBoard for each existing project which plots training graphs and pareto representations of the produced evaluations. 

 
Figure	8:	ALOHA	microservices	architecture	  

                                                               
5 https://redis.io/ 
6 https://onnx.ai/ 
7 https://www.mongodb.com/ 
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6 Deployment	and	integration	testing	process	All the components have been tested in their standalone version, as well as inside the integrated environment using a simple generic benchmark based on the CIFAR dataset and a basic image classification task. The implementation of the three ALOHA use-cases is now supported and ready to be used as stress-tests for the toolflow. For more information please refer to Deliverables D5.2 (Report on Use Case Implementation First Update), D5.4 (First release of use-case_implementation) and D5.6 (Use-case demonstrators). Moreover, in order to verify easiness of ALOHA toolflow usage, and therefore the attractiveness of the solution for prospective customers and stakeholders, which is one of the prerequisites of our exploitation plan, the Consortium has included in the deployment and integration testing process, a co-design session with the use-case providers. The purpose of this session was to gather feedback and opinions on the current version of the Guidelines for interacting with the ALOHA toolflow provided by technical partners on the ALOHA GitLab repository. The technical partners of the Consortium have prepared such guidelines to speed up the use-case implementation processes.  The session has been held in Vienna at month M17. After reading the Guidelines, use-case providers had the possibility to perform a first test phase. The use-case datasets and tasks have been provided in input to the toolflow, correctly parsed and passed through the execution of the specifically required components. Use-case specific data parsers and CNN actors (loss functions, convolution/deconvolution actors, ONNX representations, etc…) have been implemented and made available on the repository to be used in all the components.    During the testing session, technical partners from UNICA and SCCH were sitting close to use-providers, gathering feedback and taking notes on what they were experiencing, what they liked and disliked about it, what their expectations were, and what they were trying to do with the available demo. After the testing session, ALOHA use-providers provided useful and constructive critiques of the GUI and suggestions on possible enhacements. Some of the technical issues reported during the session were addressed during the two-days meeting, while suggestions and new ideas have been collected and will be implemented in the GUI by technical partners in the next months. At month M18, two main issues – based on use-providers feedback – have been addressed and are included in the GUI: 
 Possibility to delete a project directly from the GUI – this functionality has been added and is now available, as shown in Figure 9. 
 Possibility to have default hyper-parameters for each use-case - this functionality has been added and is now available. 

 
Figure	9:	Screenshot	of	the	GUI	showing	the	delete	project	option	
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7 ALOHA	Technical	KPIs	During the specification phase of the project, ALOHA partners have identified a list of technical Key Performance Indicators (KPIs) to be used for the assessment of the toolflow, see Deliverable D1.1.   An updated version of the KPIs list is presented below. The following updates have been introduced in comparison to D1.1: 
 KPIs	for	security	level (KPI1_4 and KPI1_5) 
 KPIs	for	performance	level (KPI1_6 and KPI1_7) KPIs will be evaluated comparing with design flows previously available for the use cases before the adoption of ALOHA. The list will evolve and gain more precision and substance during the lifespan of the project. 

Table	1:	ALOHA	KPIs	list	

KPI1_1	‐	Time	spent	in	
algorithm	design	

Surveillance 
UC Smart	Industry	UC Medical 

UC	

Without	adoption	of	ALOHA:	
Effort	required	in	manual	
flow	months/weeks	  

Fixed designed by hand topology. Small, few layers, trained with in house procedure. Estimated time for a new design: months 
Not available - limited  experience in DL development – Estimated time for a  new speech-processing  software project: months 

Composition of multiple ML and image processing modules. Estimated time for a new design: months 
With	ALOHA:	Effort	required	
days		
	

More complex, custom tuned topology. Estimated time for a new design: days  
Custom tuned topology. Estimated time for a new design: days 

More compact composition. Estimated time for a new design: days 
Comments:	this	takes	into	account	both	manual	efforts	as	experienced	in	previously	available	design	
flows	on	network	configurations	and	training	procedures	comparable	with	most	common	literature	
cases.	Network	configurations	and	training	procedures	can	have	significant	impact	on	the	execution	
time	of	ALOHA	building	blocks	requiring	training	tasks,	on	commonly	available	training	facilities.	

KPI1_2	‐	Time	spent	in	
parallel	application	porting	
and	optimal	mapping	onto	
MPSoCs	

Surveillance	
UC	 Smart	Industry	UC	 Medical	

UC 
Without	adoption	of	ALOHA:	
Effort	required	in	manual	
flow	months/weeks	  

Not available: application running on servers/workstations 
Not available for DL. Estimated time needed for optimal mapping of an embedded application on target plaform: weeks 

Not available: application running on servers/workstations 
With	ALOHA:	Effort	required	
hours		
	

Application optimally mapped on target platform in hours Application optimally mapped on target platform in hours Application optimally mapped on target platform in hours 
Comments:	this	takes	into	account	both	manual	efforts	as	experienced	in	previously	available	design	
flows	on	network	configurations	comparable	with	most	common	literature	cases	(10‐50	layers)	and	
common	MPSoC	sizes	(around	5‐10	processors).	Network	configurations	and	design	space	size	(number	
of	possible	mappings)	can	have	significant	impact	on	the	execution	time	of	the	system‐level	desing	
process.	
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KPI1_3	‐	Time	spent	in	
implementation	of	DL	code	on	
customized	computing	
platforms	

Surveillance	
UC	 Smart	Industry	UC	 Medical	

UC 
Without	adoption	of	ALOHA:	
Effort	required	in	manual	
flow:	days/month	
(accounting	for	the	use	of	
existing	commercial	support	
tools)  

Not available: application running on servers/workstations 
Not available for DL. Expected time needed for implementation on heterogeneous platforms: weeks 

Not available: application running on servers/workstations 
With	ALOHA:	Effort	required	
hour/days	(accounting	for	
the	use	of	existing	
commercial	support	tools) 
	

Automated middleware code generation in hours (requires a preliminary adaptation of generic primitives to platform-specific primitives) 

Automated middleware code generation in hours (requires a preliminary adaptation of generic primitives to platform-specific primitives) 

Automated middleware code generation in hours (requires a preliminary adaptation of generic primitives to platform-specific primitives) 
Comments:	effort	required	in	current	toolflow	depends	on	the	complexity	of	the	target	platform	
programming	model.	With	ALOHA,	the	first	toolflow	execution	requires	adaptation	of	the	generated	
middleware	to	the	target	programming	model.	Other	executions	will	require	less	effort,	exploiting	
already	available	adaptation.	

KPI2_1	‐	Energy	efficiency	
gain	

Surveillance	
UC	 Smart	Industry	UC	 Medical	

UC 
Without	adoption	of	ALOHA:	
full	power	consumption	and	
memory	footprint	of	a	
"regular"	DNN 

Hand-crafted CNN topology, workload reduction achieved by network size reduction. 
Not available. No current procedure for DL development. Options limited to publicly available code. 

Hand-crafted CNN topology. High complexity for high accuracy. 
With	ALOHA:	automated	
pruning	and	quantization.	We	
can	expect	reduction	of	
workload	of	around	30%‐
50%	and	the	consequent	
power‐consumption	
reduction	

Custom automatically  generated CNN topology, mappable on embedded hardware. 
Custom automatically  generated CNN topology, mappable on embedded hardware. 

Custom automatically  generated CNN topology, mappable on embedded hardware. 
Comments:	the	expected	level	of	reduction	reported	here	derives	from	general	assumptions	made	on	
experiments	performed	starting	from	well‐known	"regular"	algorithms,	after	pruning	and	quantization.	 
Han	et	al.8	report	an	average	energy	gain	of	4x	via	compression/pruning	of	DNN	layers	on	an	embedded	
GPU.	Moons	et	al.9	report	~10x	improvement	in	energy	with	little	accuracy	loss	when	using	HW	
optimized	for	quantizaiton,	which	however	accounts	only	for	computational	power. 
30‐50%	 keeps	 into	 account	 these	 and	 similar	 results,	 the	 fact	 that	 parts	 of	 the	 DNN	might	 not	 be	
quantized/pruned,	the	cost	of	overheads	which	do	not	scale	with	precision	(such	as	control)	or	scale	less	
than	computation	(e.g.	data	movement	scales	down	~linearly	with	precision,	whereas	data	computation	
scales	down	~quadratically	with	precision). 
	                                                               

8  S. Han et al., “EIE: Efficient Inference Engine on Compressed Deep Neural Network,” in Proceedings of the 43rd 
International Symposium on Computer Architecture, Piscataway, NJ, USA, 2016, pp. 243–254. 
9  B. Moons, K. Goetschalckx, N. Van Berckelaer, and M. Verhelst, “Minimum Energy Quantized Neural Networks,” 
arXiv:1711.00215 [cs], Nov. 2017. 
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KPI1_4‐	Time	spent	for	
security	evaluation	

Surveillance	
UC	 Smart	Industry	UC	 Medical	

UC 
Without	adoption	of	ALOHA:	
weeks/months	(accounting	
for	the	use	of	existing	open‐
source/	commercial	support	
tools) 

No framework available. Required integration with existing open-source/commercial support tools to create adversarial/perturbed video frames. Test with increasing levels of perturbation, for each frame of each video. Estimated time for a full evaluation: weeks/months. 

No framework available. Required integration with existing open-source/commercial support tools to create adversarial/perturbed audio samples. Need of a pervasive evaluation in the transformed space of the spectrogram. Estimated time for a full evaluation: weeks. 

Required integration with existing open-source/commercial support tools to create adversarial/perturbed images. Evaluation with increasing levels of perturbation, on the whole dataset. Estimated time for a full evaluation: weeks.      

With	ALOHA:	hours/days		

Automatic creation of adversarial/perturbed examples. Reproducible tests and reporting. Possibility of performing slow/fast evaluations. Estimated time for a full evaluation: minutes/hours. 

Automatic creation of adversarial/perturbed examples. Reproducible tests and reporting.  Possibility of performing slow/fast evaluations. Estimated time for a full evaluation: minutes/hours. 

Automatic creation of adversarial/perturbed examples. Reproducible tests and reporting.  Possibility of performing slow/fast evaluations. Estimated time for a full evaluation: minutes/hours. 
Comments:	two	different	evaluation	modes	have	been	defined	for	performing	security	evaluation	of	deep	
learning	 algorithms	 in	 ALOHA.	 The	 “slow	 evaluation”	 peforms	 an	 in‐depth	 analysis	 of	 the	 model,	
inspecting	a	large	number	of	adversarial	scenarios	(maximum	perturbation	allowed,	number	of	attack	
points),	to	provide	an	accurate	security/robustness	evaluation	of	the	model	at	hand.	The	“fast	evaluation”	
aims	to	estimate	the	security/robustness	of	a	model	by	using	fewer	evaluation	scenarios,	to	provide	a	
faster	 estimate.	 This	 mode	 can	 speed	 up	 the	 evaluation	 process	 up	 to	 10	 times,	 while	 retaining	
sufficiently‐precise	security‐level	estimates.	 
KPI1_5	–	Time	spent	for	
improving	
security/robustness	

Surveillance	
UC	 Smart	Industry	UC	 Medical	

UC 
Without	adoption	of	ALOHA:	
weeks/months	(accounting	
for	the	use	of	existing	open‐
source/	commercial	support	
tools) 

No framework available. Required integration with existing open-source/commercial support tools to implement mitigation/defensive strategies.  Estimated time for development/testing: weeks/months. 

No framework available. Required integration with existing open-source/commercial support tools to implement mitigation/defensive strategies.  Estimated time for development/testing: weeks/months. 

No framework available. Required integration with existing open-source/commercial support tools to implement mitigation/defensive strategies.  Estimated time for development/testing: weeks/months. 
With	ALOHA:	hours/days		

Mitigation/defensive strategies are implemented within the toolflow. Reproducible tests and reporting. 
Mitigation/defensive strategies are implemented within the toolflow. Reproducible tests and reporting. 

Mitigation/defensive strategies are implemented within the toolflow. Reproducible tests and reporting. 
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Estimated time for development/testing: hours/days. Estimated time for development/testing: hours/days. Estimated time for development/testing: hours/days. 
Comments:	two	different	defensive/mitigation	strategies	are	envisioned	in	ALOHA.	The	former	is	based	
on	adversarial	training,	namely,	on	the	idea	of	retraining	the	model	on	the	adversarial/perturbed	
samples.	The	second	is	based	on	the	development	of	ad‐hoc	regularized	loss	functions	to	be	optimized	
during	training,	to	improve	model	robustness	against	specific	kinds	of	input	data	perturbation.		
	

KPI1_6–		Performance/power	
evaluation	accuracy	

Surveillance	
UC	

Smart	Industry	UC	 Medical	
UC 

Without	adoption	of	ALOHA:	
identifies	order	of	magnitude 

Considers only number of operations or memory footprint as a method for estimating performance and power consumption. 
Considers only number of operations or memory footprint as a method for estimating performance and power consumption. 

Considers only number of operations or memory footprint as a method for estimating performance and power consumption. 
With	ALOHA:	less	than	20%	
inaccuracy	 

Relies on detailed architecture model to estimate performance and power consumpion.  
Relies on detailed architecture model to estimate performance and power consumpion.  

Relies on detailed architecture model to estimate performance and power consumpion. 
Comments:	ALOHA	integrates	three	tools	(perfromance	evaluation	in	WP2,	Sesame	and	AOW)	for	
accurate	estimation	of	performance,	memory	accesses	and	concurrent	processing.	Parallel	execution	on	
different	cores,	communication,	synchronization	and	memory	subsystems	are	modeled	and	considered	
when	comparing	different	designs	and	mapping.	 
	

KPI1_7	–	Time	spent	for	
accurate	performance/power	
evaluation		

Surveillance	
UC	 Smart	Industry	UC	 Medical	

UC 
Without	adoption	of	ALOHA:	
weeks/months 

Often a precise estimate is obtained only after preliminary runs on the actual target platform, requiring significant prototyping effort. 

Often a precise estimate is obtained only after preliminary runs on the actual target platform, requiring significant prototyping effort. 

Often a precise estimate is obtained only after preliminary runs on the actual target platform, requiring significant prototyping effort. 
With	ALOHA:	hours	

Relies on detailed architecture model to estimate performance and power consumpion.  
Relies on detailed architecture model to estimate performance and power consumpion.  

Relies on detailed architecture model to estimate performance and power consumpion. 
Comments:	ALOHA	pre‐characterized	models	(at	different	levels)	for	accurate	estimation	of	
performance	and	power.	This	enables	to	take	power‐	and	performance‐aware	relevant	design	choices	
and	customization	decisions	early	in	the	design	flow,	without	actual	trials	of	prototype	code	on	real	
hardware.		  


